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ance-running specialists [1-3]. However, injury rates 
ranging from 20-79% [4-6] suggest modern humans are 
prone to injury in running which the Endurance-Run-
ning hypothesis contends is a species-specific move-
ment pattern for which we are well adapted.

Explanations and solutions focus largely on shoe de-
sign and gait mechanics. Foot structure and function, 
in contrast, have received little attention in running-re-
lated research [7]. Moreover, and despite continued 
interest in running-shoe design, there has been little at-
tention on how footwear might influence foot structure 
and function and therefore the rest of the kinetic chain 
above it. This opinion piece addresses these issues and 
proposes a novel perspective that could add to factors 
explaining injury risk in endurance running.

Endurance-Running Hypothesis
The fossil record of the genus homo shows evidence 

of musculoskeletal adaptations that reduce the mechan-
ical and energetic demands of bipedal-endurance run-
ning. Adaptations differentiating homo sapiens from ear-
ly homo and from primate ancestors include the nuchal 
ligament for head stabilisation, a mobile thoracic spine 
permitting counter rotation of the trunk and legs, long 
legs that lengthen the stride so reducing energy cost per 
unit of distance, large proximal hip muscles (gluteals) to 
control forward pitch of the torso at ground contact, long 
Achilles tendons and plantar arches to facilitate energy 
storage and return, and short-straight toes that minimise 
toe flexion moments and smooth the forward trajectory 
of body weight over the supporting foot [1-3]. Many of 
these adaptations benefit running only, suggesting that 
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Key Points
Humans are adapted for endurance running, but injury rates 
are high, A mismatch between evolved structure and func-
tion of the foot, and design features of modern footwear 
could explain the high injury rate in the derived movement 
pattern of endurance running, Evidence suggests that the 
design features of modern footwear can deform foot struc-
ture and impair foot function. The loss of structure and func-
tion could explain many common running injuries.
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this activity was an important species-specific movement 
pattern for survival, and that these adaptations were re-
tained by selective pressure [2,3,8-10].

Mismatch Hypothesis
Evolutionary adaptations can be phylogenic (of a 

species) or ontogenic (within an individual’s lifespan). 
Both are responses to the habitat in which the organ-
ism lives. The phylogenic evolution of humans occurred 
over 200,000 years as hunter gatherers in Africa [10]. 
The anatomical adaptations discussed above reflect the 
demands of that lifestyle and habitat. By comparison, 
modern lifestyles and habitats are a blink of an evolu-
tionary eye to which our species is yet to phylogenically 
adapt, but to which we do ontogenically adapt (Figure 
1a and Figure 1b). Deformations of foot structure and 
subsequent impaired foot function are examples of on-
tengenic adaptation known to relate to years of narrow 
footwear use [11,12]. A mismatch between what hu-
mans are adapted for and the habitat in which we now 
exist is suggested to underpin many health and injury 
problems [10,13]. We propose that the design features 
of conventional footwear, and the structure and func-
tion for which feet are adapted could be considered a 
mismatch. We further suggest that ontogenic adaptions 
to this mismatch (deformed toe position in particular) 
could compromise foot function and increase risk of in-
jury in endurance running. For the purpose of this opin-
ion piece, we define foot structure and function congru-
ent with phylogenic adaptation as ‘biologically normal’. 
Foot structure and function at odds with evolutionary 

heritage and resulting from unfavourable ontogenic ad-
aptation are defined as ‘culturally normal’.

Foot Structure and Function
In an upright biped, the purpose of the foot is to sup-

port and control the direction of the body weight as it 
falls forwards during the stance phase of locomotion 
[3,14,15]. With this and fundamental principles of phys-
ics in mind, a reverse-engineering approach suggests a 
larger base of support (i.e. the effective area of the sup-
porting foot), that is widest at the front, would serve 
both purposes. Unsurprisingly, comparisons of habitual-
ly-unshod with habitually-shod populations consistent-
ly show wider (particularly at the front) feet in unshod 
populations, in agreement with that predicted by funda-
mental principles governing stability [12,16-19]. Obser-
vational studies on habitually-barefoot populations also 
demonstrate the benefits of a wide foot in the form of 
more uniform distribution of pressure through the en-
tire plantar surface of the supporting foot during walk-
ing [18], and reduced peak pressure and pressure-time 
integral under the forefoot when running [20]. Given 
that pressure is force divided by area of contact, these 
observations support the natural selection of a wide 
foot to serve a support function.

Of importance to forefoot width and the stabili-
sation role of the foot is the position and function of 
the great toe. The notable spread and abducted posi-
tion of this toe from the others characterises habitual-
ly-barefoot populations [16,18,19]. Increased thickness 
and an abducted position of the great toe in humans 

 

Figure 1b) 

 

Figure 1a)

Figure 1: Evolutionary mismatch hypothesis (a) Match between environment inhabited and phylogenic adaptations; (b) Mis-
match between environment and phylogenic adaptations resulting in unfavourable ontogenic adaptation.
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knee joint. Evidence also suggests that constraining fore-
foot width and preventing direct contact of the great toe 
with the ground impairs directional stability and balance, 
and increases plantar pressure, both of which are known 
to increase ankle and overuse injuries [18,33,34].

Foot Structure and Energy Return
The medial-longitudinal arch of the foot represents 

one of most important evolutionary-lower-limb adapta-
tions for endurance running in humans [1,8,9]. Humans 
are the only primate to have evolved this structure. 
Compression of the medial-longitudinal arch contrib-
utes to the return of elastic energy captured in the first 
half of stance [8,24,35-37]. Stearne, et al. [8] recently 
demonstrated this in vivo by restricting compression of 
the arch and reporting an adverse effect on the meta-
bolic cost of running. Running with a ‘full arch’ insole 
(decreasing arch compression by 80%) reduced elas-
tic energy storage by 8.8% and increased the cost of 
transport by 6%. Recent work also suggests that elastic 
contributions increase with running speed [38]. A sub-
stantial energy saving is made with biologically-normal 
functioning of the longitudinal arch.

Sensory Role of the Foot
The plantar surface contains slow-adapting mecha-

noreceptors, providing feedback about the spatial distri-
bution of pressure, and rapid-adapting mechanorecep-
tors that sense magnitude and change in magnitude of 
pressure [39,40]. Evidence suggests that plantar-sensory 
feedback is used to modify running technique to avoid 
painful and potentially injurious impacts [24,41,42]. In-
creasing plantar sensation via textured insoles has re-
cently been shown to reduce vertical loading rate by a 
magnitude equal to the difference between injured and 
non-injured runners by reducing stride length [43]. In 
other work, Gruber, et al. [42] investigated whether heel 
striking, a landing pattern associated with injury [6] and 
commonly seen in western populations, was related to 
impaired plantar-sensory feedback. When running bare-
foot on a soft-cushioned material similar to a running 
shoe, 80% of participants landed on their heel. Only 35% 
retained a heel strike, with 27.5% and 37.5% changing 
to midfoot and forefoot landings respectively when the 
cushioning was removed. Gruber, et al. [42] suggested 
that the change in foot strike pattern was a response 
to the change in surface compliance and perceived in-
crease in the sense of impact when running barefoot on 
a hard surface. Similar responses were observed by Li-
eberman, et al. [44]. After adjusting for speed and stride 
frequency, there was greater variability in foot strike 
pattern between soft and hard surfaces in habitually 
barefoot than in shod runners. There was a significant 
trend to heel strike on a compliant surface and an in-
creased likelihood to land on the mid or forefoot on a 
hard surface in participants that habitually ran barefoot. 
Hatala, et al. [45] had previously reported a switch from 
heel to forefoot striking with increasing running speed in 

are evolved-functional adaptations providing direction-
al stability in bipedal locomotion [20-22]. These ad-
aptations are important considering that direction of 
ground-reaction forces (and the resulting joint moments 
created) contribute to injury [20,23-25].

The main function of the great toe is to direct body 
weight through the axis of leverage of the foot, while fa-
cilitating the windlass mechanism and creating a rigid le-
ver for force transfer in terminal stance [9,21,22,26]. The 
stabilising role was demonstrated by Chou, et al. [22]. 
Directional stability, quantified as % of centre-of-pres-
sure movement in the intended direction, was signifi-
cantly worse when the great toe was splinted into 30° 
of dorsiflexion. These results and other investigations of 
static-unipedal balance, suggest that a reduced-forefoot 
width results in a smaller mechanical lever to control di-
rectional stability [22,27]. Morton [21] and Plank [28] also 
demonstrated a compromised-functional capacity of the 
foot with a valgus (adducted) position of the great toe in 
walking trials. Both authors reported excessive pronation 
in feet with great-toe valgus. So, positioned, the toe can-
not oppose the inward role of the foot due to reduced 
lever arm length. Increased loading in the transverse and 
frontal plane at joints above the foot is a likely conse-
quence of instability at the foot, and might explain the 
high injury rates observed at the knee in runners lacking 
biologically-normal foot structure and function [4].

Further evidence for the importance of the great toe 
in the control of bipedal locomotion comes from neu-
rophysiology and comparative anatomy. The ratio of 
sensory to motor nerves in humans is reported between 
9:1 and 40:1, highlighting the importance of sensory 
feedback for movement control [29,30]. Hashimoto, et 
al. [31] mapped the neural and somatic representation 
of the fingers and toes in living humans and monkeys. 
While monkeys and humans represented fingers sep-
arately in the primary-sensorimotor cortex, the toes 
in monkeys were not differentiated. In contrast, hu-
mans had independent-cortical representation of the 
great toe from the other toes. Moreover, Aiello, Dean 
and Cameron [32] report that unlike chimpanzees and 
orang-utans, humans have a separate and distinct pri-
mary-flexor muscle (flexor hallucis longus) that inserts 
only to the great toe. The independent representation 
and muscular control of the great toe in humans, absent 
in non-bipedal primates, underlines its importance in 
the control of bipedal locomotion.

Evidence suggests that selective pressure for success 
in endurance running has adapted the structure and 
function of the great toe to direct and control the forc-
es associated with this gait. There is also evidence that 
misalignment of this toe compromises control of body 
weight through the longitudinal axis of the foot, leading 
to excessive loading in the transverse and frontal planes. 
Such patterns could produce injurious loading at joints 
proximal to the foot, particularly the primarily-sagittal 
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over 100 years [16,24,47-50]. Studies show that biolog-
ically-normal flexibility and width of the forefoot, and 
longitudinal arch development are compromised by 
non-anatomically-shaped footwear [1,8,47,50,51].

The plasticity of foot structure was well known and 
exploited by the Chinese in the ancient cultural practice 
of foot binding [16,52]. The timescale of structural al-
terations appears to be rapid, particularly in the young, 
where bones have yet to fully ossify [50]. Hoffman [16] 
observed hallux deformation in a habitually-barefoot 
teenager required to wear shoes for just six weeks. In an 
adult-case-study patient, Knowles [53] showed reversal 
of great toe valgus after two years wearing anatomical-
ly-shaped shoes (i.e. tip of shoe medial to the medial 
border of the great toe). Other observational research 
[12] reported a significant relationship between years 
of shoe wear and great-toe-valgus angle in shoe-wear-
ing communities, with valgus angle increasing in a linear 
fashion with years of shoe wear. The observed adap-
tation of foot structure to shoe wear is in accord with 
Wolff’s law, as is the reversal of deformity observed by 
Knowles [53].

Highly cushioned, narrow, stiff-soled and toe-sprung 
footwear characteristic of the modern-running shoe 
could potentially compromise foot structure and func-
tion. Indeed, altered gait patterns, increased maximum 
impact force, reduced arch deformation and toe flexion 
have been reported in children running in convention-
al-running shoes compared to barefoot [54,55]. More-
over, a comparison of shod and barefoot populations 

a population of habitually-barefoot Kenyans. Together, 
these results confirm the importance of plantar-sensory 
feedback to modify technique according to speed and 
substrate underfoot, and show cushioned footwear to 
reduce adaptability in technique in response to changes 
in impact with speed and surface compliance.

Evidence suggests that sensitivity of the plantar sur-
face has evolved for avoidance of injury. It follows that 
compromised sensory feedback might increase injury 
risk. However, unlike other cursorial mammals, humans 
have not evolved thick keratinous protection against 
puncture or thermal injury such as hooves or pads, 
hence humans have used footwear for this purpose, 
with early examples dating back 10000 years [46]. A re-
cord of the characteristics of such early footwear show 
that they were mostly types of sandal, offering simple 
protection without interfering with biologically-normal 
foot function. In contrast, common design features of 
modern footwear such as heavy cushioning, elevated 
heels, arch supports, a tapered and narrow toe box and 
a toe spring (upward curve of the sole at the front of 
the shoe) that flexes the great toe off the ground, are at 
odds with biologically-normal foot structure and func-
tion. Ontogenic adaptations to this mismatch and the 
functional implications are discussed next.

Implications of Footwear Design on Foot Struc-
ture

Research reporting the detrimental effects of foot-
wear on the structural development of the foot spans 

Shoe Foot Footprint
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Figure 2: Anatomically-shaped shoes permit biologically-normal structure and function whereas non-anatomically-shaped 
shoes produce ‘shoe-shaped’ feet.
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to the knee is associated with increased joint loading at 
the knee and hip [64] and the potential for overuse in-
juries. The cushioned heel masks the true forces acting 
upon the foot allowing runners to perceive over stride 
as safe [58,65].

Biologically Normal Versus Culturally Normal 
and the Injured Running Specialist

There is evidence that humans are uniquely adapt-
ed to perform endurance running with minimum ener-
gy expenditure and injury risk. Natural-human cultures 
that still practice persistence hunting wear traditional 
footwear that adapts to the foot, offering only punc-
ture wound and thermal protection [66]. Such cultures 
are characterised by wide, flat and flexible feet, even 
plantar-pressure distributions, and running styles with 
higher stride frequency and lower propensity to heel 
strike, particularly at higher speeds and on harder sur-
faces. By contrast, western populations that grow up 
and run in conventional, tapered, toe-sprung, stiff and 
cushioned footwear, have narrower feet, higher inci-
dence of great-toe deformity that worsens with years of 
shoe wear, uneven distribution of plantar pressure, and 
running styles characterised by lower stride frequency 
and high propensity to heel strike regardless of speed 
or running surface. There are few data on injury rates 
in natural-running populations. However, based on the 
mismatch hypothesis and the evidence reviewed here 
in relation to foot development, structure, function and 
the effects of conventional footwear on these, we pro-
pose that the high-injury rates in western runners could 
be (in part) related to acute and chronic loss of biologi-
cally-normal form and function of the feet, due to habit-
ual use of conventionally-shaped-cushioned footwear. 
This suggestion could add to the list of factors currently 
thought to explain injury risk in runners, but requires 
further study.

Summary, Implications and Recommendations
Evidence suggests that a biologically-normal human 

foot is well adapted to deal with the loads and dynam-
ic-instability challenges of endurance running. However, 
it is susceptible to puncture and thermal injury from the 
range of environments that humans inhabit. This pro-
vides the rationale for footwear. The design features of 
conventional footwear can compromise the structure 
and function of a biologically-normal foot. Chronic use 
of conventional footwear and the associated maladap-
tation could be irreversible, or take years to undo. This 
could explain the findings of studies reporting negative 
effects for acute minimal-shoe interventions in habitu-
al-conventional-shoe wearing runners [67,68] that pos-
sibly began these studies with compromised foot struc-
ture and function.

To promote and maintain biologically-normal foot 
function, footwear should be anatomically shaped, flat, 
flexible and of sufficient thickness to allow sensation 

suggested that habitual-western-footwear use leads 
to stiffer feet with impaired function [47]. There is a 
dearth of longitudinal studies examining the effects of 
long-term shoe wear on foot function. However, a re-
cent prospective, long-term follow up, study using large 
samples of mono and dizygotic twins provided strong 
evidence that development of great toe deformity (hal-
lux valgus) is not genetic, but is significantly associated 
with years of wearing narrow shoes, with frequent use 
increasing risk of developing toe deformity by almost 
three fold [11].

From an evolutionary perspective, footwear makes 
sense, particularly given the range of environments in 
which humans thrive. However, the mechanics and evo-
lution of the foot dictate that such footwear should be 
anatomically shaped to allow biologically-normal toe 
position and function, and also flat and flexible enough 
to allow unimpeded movement of the foot and toes 
during locomotion. Such characteristics have been pre-
viously recommended [49,52] (Figure 2).

It is notable that a review of injury-reducing benefits 
of conventional-cushioned-elevated-heel-running shoes 
could find no supporting evidence [56]. Cushioned-ele-
vated heels are marketed to offer protection from large 
impact forces and high loading rates characteristic of 
a heel-strike strategy [24,57]. This marketing is largely 
based on machine testing protocols that do not account 
for proprioceptive feedback and human-behavioural 
responses to compliant materials [58]. Furthermore, a 
heel-toe drop has been argued to encourage running 
mechanics associated with injury [6,57].

Heel elevation produces a dorsiflexion off-set and 
encourages the commonly-observed heel strike pattern 
associated with increased effective mass, impact tran-
sients and higher injury rates [6,24,59]. Moreover, the 
sensory dampening created by the cushioning leads to 
additional kinetic consequences.

Implications of Footwear Design on Sensory 
Feedback

Plantar-sensory feedback provides key information 
about the location and magnitude of forces under the 
foot [39,40]. The cushioning in modern footwear impairs 
sensory input in static and dynamic tasks [42,58,60]. 
As previously discussed, Gruber, et al. [42] showed a 
strong relationship between change in foot-strike strat-
egy (heel strike to mid/forefoot strike) and change in 
surface conditions (compliant to hard). This agrees with 
the biological imperative i.e. the subconscious drive to 
minimise energy cost subject to also minimising injury 
risk [61,62]. The energetic cost of running is inversely 
related to ground-contact time and is also paid for ‘per 
step’ i.e. when body weight is supported against grav-
ity [63]. It is energetically favourable to cover a given 
distance with a longer ground contact time and stride 
length. However, while economical, over stride relative 
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HJ (1997) Variations in foot breadth: effect on aspects of 
postural control during one-leg stance. Arch Phys Med Re-
habil 78: 284-289. 

28. Plank M (1995) The pattern of forefoot pressure distribution 
in hallux valgus. The Foot 5: 8-14. 
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appropriate to the terrain, while protecting the plan-
tar surface of the foot. These features facilitate bio-
logically-normal alignment of the great toe, contact of 
the great toe with the ground, spreading and flattening 
of the loaded foot, free flexion of the toes, and appro-
priate sensory feedback. Where necessary, shoes with 
these features should be worn from childhood. How-
ever, there is a caveat to these recommendations. In 
maladapted adults, switching from conventional shoes 
to shoes with these features should be made with cau-
tion. Exposing a compromised foot to the demands of 
endurance running without the support on which it has 
come to depend is a mismatch that is likely to lead to 
problems. Gradually exposing compromised feet to the 
lower demands of standing and walking in anatomical-
ly-shaped, flat and flexible shoes is probably a sensible 
starting point to regain biologically-normal structure 
and function. Future research should explore these sug-
gestions.
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